

©2017, David Fisher, used by permission 1

T
U

T
O

R
I
A

L

PolarSoft
®
 Inc.

914 South Aiken Ave
Pittsburgh PA 15232-2212
412-683-2018 voice
info@polarsoft.com
www.polarsoft.com

Change of Value in BACnet
David Fisher

10-Feb-2017

 10-Feb-2017 Change of Value in BACnet

©2017, David Fisher, used by permission 2

Contents

Introduction ... 3

COV Types .. 3

Unsubscribed COV ... 5

How COV Works .. 6

 10-Feb-2017 Change of Value in BACnet

©2017, David Fisher, used by permission 3

Change of Value in BACnet 10-Feb-2017
David Fisher

Introduction

Many BACnet clients have the need to monitor the moment-to-moment value of an object
property in some object in some device. This is easy to do using the ReadProperty service in
BACnet. But often values don't change frequently, or it's unpredictable when they will change.
That forces the client to read the value perhaps over and over even though the value hasn't
actually changed. What's worse, is that when there are a lot of values that need to be
monitored, the client produces more and more traffic on the network in order to reread these
values, even though many of them haven't changed either. Generally the problem doesn't scale
well in larger systems.

To help mitigate these situations, BACnet includes a concept that is called change of value
(COV). The idea is that a client that is interested in a value, tells the server that owns the object
property whose value is needed, that it is interested in knowing any time the value changes by a
certain amount from the last time it was reported to the client. This is called a subscription and
works much like a magazine subscription. Once subscribed, the server worries about detecting
whether the value has changed, and when it changes by more than the subscription's
designated amount, then a special COVnotification message is sent to the subscribing client that
includes the new value. This technique can substantially reduce the amount of network traffic
under normal circumstances.

BACnet supports several types of COV. This paper discusses each type, how it works, and issues
that may occur when implementing and using COV in general.

COV Types

In the scheme of COV there are two types of devices:

 Some device that can detect changes of value for one or more objects (a server)
and

 Some device(s) that are interested in knowing when these values change (a client)

BACnet provides two kinds of approaches to solve this problem, and devices are free to not
implement them at all, or to implement one approach, or both.

The first approach is called Subscription. The client device sends a message called SubscribeCOV
to the server. The subscription identifies what object is of interest in the server device, how long
the subscription should last, and how changes of value should be reported back to the client.

When a change is detected, the server must notify
the client that the change has occurred. Clients are
allowed to group notifications together so that
potentially different processes in the client can
manage them, e.g. maintenance notifications vs.
lifesafety notifications.

When the client issues a subscription it provides a
“process ID” to the server. This is a number that
presumably has significance to the client.

 10-Feb-2017 Change of Value in BACnet

©2017, David Fisher, used by permission 4

In the example above the processID is 123. The client is interested in the object AV-27. Because
it’s a standard object type (AV) the standard defines which property is the one that will be
checked for changes (Present_Value in this case). The amount by which the Present_Value must
change before a notification is the COV_Increment property of the AV object. When the change
occurs the subscription says that the server should issue a ConfirmedCOVNotification. The
subscription should last for 300 seconds.

If the client is still interested in receiving notifications after 300 seconds then it must
resubscribe, so typically the resubscription occurs sometime around (lifetime - resubscription). If
there is no resubscription then after lifetime elapses the subscription is canceled and freed for
use by others. It is possible to provide a lifetime of zero which means “indefinite lifetime”. In
this case the subscription is never canceled automatically. The popular opinion is that indefinite
lifetimes should be discouraged. The reason for having a lifetime is that if the client “goes away”
for example is turned off or disconnected for some period of time, the server will continue to try
to deliver notifications to it. This causes a lot of extra work for the server, and extra bandwidth,
that serves no purpose. Having a tighter lifetime assures that the server stops resending if the
client subscription lapses.

The “ConfirmedNotifications” specifies whether the server sends the notification as a Confirmed
or Unconfirmed service. Confirmed services require a positive handshake from the client when
the notification is received, otherwise it will be retried numerous times (Nretries) after a
suitable timeout period (APDU_Timeout). On the other hand Unconfirmed services are just sent
once, and don’t require a handshake, and are not retried. In either case the COV notification is
unicast to a specific device.

This concept we’ve described so far is often referred to as “COV” and you’ll notice that it is:

 subscription based

 targets a specific object

 implies the property that is monitored for change based on object type

 implies a change amount that comes from the target object’s COV_Increment property

 provides an explicit destination process in the client

Sometimes a client may be interested in a different property than the one you would normally
think of for an object type. For example, for an AV normally we are interested in Present_Value,
but suppose that we want to be informed if instead the Object_Name is changed? Or if the
High_Limit is changed? In these case the subscription needs to provide the property ID of the
alternate property to monitor. The client can use the SubscribeCOVProperty service instead of
SubscribeCOV to do this:

This is very similar to SubscribeCOV but includes the
PropertyID. In cases when the propertyID is a numeric-
valued property, such as High_Limit, the
COV_Increment is provided as well. Note that if we
want to override the normal COV_Increment in an
object we can use SubscribeCOVProperty also for the
Present_Value.

This concept is often called “COVP”.

 10-Feb-2017 Change of Value in BACnet

©2017, David Fisher, used by permission 5

A common scenario is that a specific client device actually wants to subscribe for multiple
different objects, and possibly specific properties, in the same device. While it's certainly
possible to accomplish this using COV or COVP, it greatly increases the complexity and burden
on the client because each individual subscription must be tracked and supervised
(resubscribed). The 135-2016 BACnet standard introduces the idea of a COV property multiple or
"COVM." The SubscribeCOVPropertyMultiple service is used to request this kind of multiple
object-property subscription:

This is very similar to the other types of subscription in that a SubscriberProcessID,
ConfirmedNotifications option and Lifetime are provided when subscribing. However you'll
notice that the service is provided with a list of objects to be monitored, and that each of those
objects also specifies its own list of COV References. Each reference is a PropertyID for the
object property to monitor for changes as well as a COV Increment for REAL-datatyped
properties only. There is also an option to request that changes include a timestamp or not.

The MaxNotificationDelay is always less than Lifetime and specifies how many seconds may
elapse before notifications of changes to properties, that were specified as Timestamped=TRUE,
may be delayed. The idea is to allow the device to queue notifications of timestamped changes
for a while in order to reduce the number of notifications that need to be sent.

Unsubscribed COV

But there is a second approach to COV. It’s not so often used here in the US, but interestingly is
almost exclusively used in Japan. This is called Unsubscribed COV.

The idea is that the server is configured to “know” that specific values are of general interest to
peer devices, and that when those values change the server should just go ahead and send a
COVnotification even though there is no explicit subscription. Usually such devices have an
enable/disable for this feature as well as a maximum rate (e.g. no more than X notifications per
minute). Although the server could send these unicast to specific devices, that requires
configuration in the server of who the device(s) are. So usually this kind of COVNotification is
broadcast. It’s a really bad idea to issue such a broadcast to the global network, so when it’s
used it should be only broadcast on the local segment, where presumably the peer devices are
located.

 10-Feb-2017 Change of Value in BACnet

©2017, David Fisher, used by permission 6

Because the unsubscribed COVnotification might be broadcast, that introduces a new problem.
The subscriber ProcessID you’ll recall is unique to the client that issued the subscription.
However if we send a COVnotification as a broadcast then the processID MUST have the same
meaning to all receiving clients.

The original idea was that processIDs were unique to a SITE but over time this has changed to
unique to a client device. This breaks the original assumption.

Today we reserve the special process ID of 0 to mean “unsubscribed”. When a server sends an
unsubscribed COVnotification it MUST only use processID zero. Many clients treat this specially
and will only look at incoming COVnotifications with processID==0 as unsubscribed. This concept
is called “COVU”.

How COV Works

When COVNotifications arrive they look like this:

The SubscriberProcessID comes from the original subscription request, or it's zero if the
notification is unsubscribed. The DeviceID is the device instance of the sending device. This is
useful for unsubscribed cases because you don’t necessarily know who the sending device is yet.
The TimeRemaining is how long the existing subscription will last (from now). The List of Values
is a list of blocks that each contain a propertyID, optionally an array index if the property is an
array, and the property value that has changed.

You might ask, why do I get more than one value? The answer is that standard object types have
a standard collection of values you get back, usually Present_Value and Status_Flags. But some
kinds of objects are more complex. For example the Global_Group object you’ll recall has a
Present_Value that is a collection of multiple objects and their values.

When a Global_Group sends even an unsubscribed COVNotification, it will contain potentially
many values one from each of its members. Without segmentation, or in the case of
Unsubscribed broadcast which can’t use segmentation, it's possible that the list of values is too
big to fit in a single COVNotification. In that case, multiple COVNotifications can be sent, each
one containing a subset of the group member’s values.

When COVM subscriptions are used the process is similar. Instead of ConfirmedCOVNotification
service, there is a ConfirmedCOVNotificationMultiple service. However since there isn't a single
object as in ConfirmedCOVNotification, there are multiple objects each with potentially multiple
properties and multiple values.

 10-Feb-2017 Change of Value in BACnet

©2017, David Fisher, used by permission 7

Notice that the service includes an optional parameter Timestamp that conveys the timestamp
for the last change in the notification. It's only included if one or more of the subscribed
property subscriptions specified Timestamp?=TRUE.

The List of COV Notifications includes a list of objects and for each one also a list of values for
those properties that are subscribed to. Notice that a given value may also include a Time of
Change timestamp if the corresponding property subscription had Timestamp?=TRUE.

There is a subtle capability that is also provided by SubscribeCOVPropertyMultiple. The server
that issues ConfirmedCOVNotificationMultiple may aggregate together notifications of
individual property changes into the same notification as long as the subscribing client and
processID are the same and those subscriptions were for COVM notifications. Another subtle
point is that the number of property change notifications in any given
ConfirmedCOVNotificationMultiple may be less than the total number in the subscription. This is
because only those properties that have changed are reported. This is very convenient for
servers that don't implement segmentation, or whose subscribing client doesn't, because if
there are too many changes to fit in a single ConfirmedCOVNotificationMultiple message, then
multiple messages can be sent, each containing as many change notifications as will fit.

This is a considerable improvement over regular COV subscriptions, even with Global Groups,
because only the changed values need be sent.

Of course, COVM can also specify UnconfirmedCOVNotificationMultiple and the same rules as
COVU apply with respect to the Subscriber ProcessID when these messages are locally
broadcast.

